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Abstract 

The coherent terms in the spherical-wave approach 
of the statistical dynamical theory are reformulated 
using rigorous boundary conditions in contrast to the 
intuitive boundary conditions of the original formula- 
tion by Kato [Acta Cryst. (1980), A36, 763-769, 770- 
778]. These boundary conditions are explained physi- 
cally by a general interference effect between the 
forward-diffracted wave and the incident undiffracted 
wave (using the optical theorem) and their con- 
sequences on the total (Bragg and forward-diffracted) 
incoherent intensity are also discussed. 

1. Introduction 

The statistical dynamical theory (SDT) of Bragg 
diffraction by randomly distorted crystals, first formu- 
lated by Kato (1980a, b), can be divided into two 
parts. Only the first part, consisting in the calculation 
of the so-called coherent waves diffracted into the 
Bragg and forward directions, will be considered 
explicitly in the present paper. Even in the case of a 
nonabsorbing crystal, these coherent waves lose 
intensity, which is transferred to the incoherent beams 
calculated in the second part of the theory. We shall 
consider the case of a nonabsorbing crystal with a 
centrosymmetrical structure, in Laue symmetrical 
conditions. Our purpose is to reveal the differences 
between our approach and the previous one by Kato 
(1980a, b) and by A1 Haddad & Becker (1988), Becker 
& A1-Haddad (1989, 1990, 1992). This is particularly 
clear when the static Debye-Waller factor is equal to 
zero; in the previous approach there are then no 
coherent diffracted intensities at all but in our 
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approach there is indeed some coherent intensity in 
the forward-diffracted beam. 

The present paper deals with the point-source func- 
tions (PSF) that represent the coherent waves gener- 
ated by a point source on the entrance surface of the 
crystal (this is known as a 'spherical wave'). A slightly 
different form of the differential equations satisfied 
by the coherent PSF is proposed and special attention 
is paid to the boundary conditions which must be in 
agreement with the usual dynamical theory of diffrac- 
tion by perfect and by nonrandomly deformed crys- 
tals. We show that the transmitted wave is not affected 
by the random distortion of the crystal in a narrow 
region close to the direction of the undiffracted wave. 
This has a physically meaningful consequence: the 
transmitted intensity is reduced by interference 
between the undiffracted wave and the forward- 
diffracted wave, this reduction being compensated 
for in the total diffracted intensity (this is simply a 
statement of the 'optical theorem' described in most 
textbooks on quantum mechanics). 

Our results for the coherent PSF are in agreement 
with the paper by Polyakov, Chukhovskii & Piskunov 
(1991) and it is proposed to use a similar approach 
for the calculation of incoherent beams. This is dis- 
cussed here and will be the topic of forthcoming 
papers. 

2. The PSF in diffraction by a distorted crystal 

Let O be a point source on the entrance surface of 
the crystal; we shall use the nonorthogonal coordinate 
system (OSo, OSh) shown in Fig. 1. Let Gh(so, Sh) 
and God(So, S h) be the amplitudes of the Bragg- 
diffracted and forward-diffracted waves respectively. 

© 1992 International Union of Crystallography 
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The total wave in the forward direction, inc luding 
the incident  wave represented by the delta funct ion 
3(Sh), is 

Oo(So, Sh)=3(Sh)+God(So, Sh). (1) 

Go(so, Sh) and Gh(So, Sh) are solutions of  the Takagi 
differential equat ions 

o G h ( s o ,  S h ) / O S h  = ix~O(So, S h ) G o ( S o ,  S h ) ,  
(2) 

OGo(so, Sh)/OSo = ix~o*(So, Sh)Gh(So, Sh). 

Here, X is the reciprocal of  the so-called extinction 
length of  the considered reflection and ~O(So, Sh) is 
the lattice phase  factor 

~o(so, Sh) = exp [ - i h .  U(So, Sh)], 

which depends  on the diffraction vector h and on the 
local d isp lacement  field u(so, Sh) of  the crystal lattice. 
Equat ions (2) can be written in integral form, 

s h 

Gh(So, Sh) = ix ~ d'o ~o(so, rl)Go(so, r/), 
o 

• o (3) 

Go(So, Sh) = 3(Sh)+ ix ~ d~: ~o*(~:, Sh)Gh(~, Sh). 
o 

Their  solution can be represented by the fol lowing 
expansions,  obta ined by iteration: 

co  

Q(S o ,  s~)= Z O~2"+')(So, s~), 
,,=o (4) 

Oo(So.S,)=~(s,)+ E O~"~(So.S~). 
n = l  

The first terms are 

Sh 

O~hl)(So, Sh)= ix ~ drip(so, n )8 (n )=  ix~O(so, O), 
o 

so 

Ofo2)(So, Sh)=(ix) 2 ~ d~: ~o*(~:, Sh)~p(s ¢, 0), 
o 

s h s o 

G~3)(So, Sh)=(ix) 3 ~ drl ~ d~¢(So, n)  
o o 

x ~*(~, n)~,(~:, 0). 
The upper  index (m) is the number  of  scattering 

events taking place between the point source and the 
observation point. 

It should be noted that G~h 1) and G~o 2) are the only 
nonzero terms for Sh = 0: 

Gh(So, O)= G(h')(So, O)= ixq~(So, O) 
(5) 

God(So, o)= G~)(so, o)= -X2So. 

This shows that God(So, 0) does not depend  on the 
crystal distortion. 

In the case of a perfect crystal the successive terms 
are easily calculated and we thus recognize the well 
known solution in terms of  Bessel functions" 

co 

G h ( S o ,  S h ) = ~ .  " 2n+l n n ( I X )  S o s h / n ! n !  
o 

= iXJo[2X(SoSh)l/2], 
(6) 

co 

= (~X) SoSh /n  n--1)v God(So, S~) E " 2. . . - ,  t( . 
1 

= X(So/Sh )l/2Jl[ 2X(SoSh ),/2]. 

•k, xO 
i / i , . :  ," / ~ N  / / l "  11/" 

/ 2 e ~ \  

s o 

s o  

Fig. 1. Illustration of the spherical-wave geometry in the Laue 
case. 0B is the Bragg angle. A 'zig-zag' path contributing to the 
Gh(3)(So, Sh) term of the Bragg-dittracted w a v e  Gh(So, Sh) is  

shown here. The symbols • and O indicate the positions of 
scattering events from the forward o beam to the Bragg h beam 
and vice versa. The wave amplitudes G,.~,(s,., .%) are zero outside 
the 'Borrmann fan' limited by the axes Os o and OSh. The total 
phase factor associated with this path is ~0(~, 0)~o*(~, ~)~0(So, rt). 

3. The PSF in diffraction by a randomly 
distorted crystal 

Following Kato (1980a),  we now consider  the lattice 
phase factor as a r andom function, from which a 
uniform static Debye-Wal l e r  factor E and a second- 
order correlation funct ion g(t)  are defined such that 

(~O(So, Sh))= E 

(~(So, sh)~,*(So± t, s h ) ) = ( ~ ( s o ,  s~)~*(so ,  s~ ± t)) 

= E 2 + ( 1 - E 2 ) g ( t ) .  (7) 

A correlation length z is defined as 

oo 

"r = ~ dt  g(t)  
o 

We shall assume Xr<< 1. A convenient  choice for g(t) 
is 

g(t)  = exp ( - I t l /~ ' ) .  (8) 

The coherent  wavefunct ions are defined as the 
averaged quanti t ies (Gh(So, Sh)) and (Go(so, Sh)). The 
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first terms of their expansions are 

(G(hl)(s°' sh))= ixE (9) 
(2) (Goa(So, Sh)) = - x 2 [ E  2 + (1 - E2)g(Sh)]So. 

To obtain differential equations for (Gh(So, Sh) ) and 
(Goa(so, Sh)), we consider the derivatives 

O( G(h2"+')(So, Sh))/OSh = ix( ~o( so, Sh)O(o2")( So, Sh)) 

=ixE(G~") (So ,  Sh)) 
$o 

- X  2 ~ di~([~O(So, S h ) - E ]  
0 

x ~*(~, sh)G~2"-')(~, s~)). 

We now introduce the decoupling approximation 

([~(So, s~)- E]~*(~:, s~)G~2"-')(~, s~)) 

= ([~O(So, s~ ) -E ]~o*(¢ ,  sh))(G~2"-')(~, s~)). 

Since we have 

([~o(so, Sh)-- E]tp*(~, Sh))= ( 1 -  E2)g(So - ~), 

we obtain 

c9( G(2n+l))/OSh ---- ixE(G(o2")) - (1 - E 2 ) X  2 

So 

x j d~g(So-~)(G~h2n-l)(~, Sh)) 
0 

and, similarly, 

O( G(o2"))/ OSo = ixE ( G(h 2"- ')) -- ( 1 -- E2)X 2 

s h 

x j dr ! g(Sh--rl)(G~"-2)(so,  rl)) 
0 

O( G(o2))/OSo = ixE( G(h ')) --( 1 -- E2)x2 g( Sh). 

In the remainder of this paper, we shall omit the 
symbol (. . .) .  Go and Gh thus denote the mean 
averaged (coherent) PSF. 

We obtain, by recombining equations correspond- 
ing to different orders, the integro-differential 
equations 

aGod/aSo = iXEGh(So, Sh) 
s h 

- (1 -~ .2)x  21 dngCSh-n)Go~(so, n) 
0 

- (1 - EE)xEg(sh) , (10) 

OGh/OSh = ixEGoa(so, Sh) 
s o 

- ( 1 - E 2 ) X  2 ~ d~g(So--~)Gh(~,Sh) .  
0 

In the next section we shall use equations for Go 
and Gh instead of God and Gh. We then obtain, 

instead of (10), 

OGo/Oso = iXEGh(So, Sh)+ ixES(Sh) 
s h 

- ( 1 - E 2 ) x  2 ~ drlg(sh-71)Go(so ,  rl) 
o (11) 

oOh/OSh = ixEOo(so, Sh) 
So 

- ( 1 - E 2 ) x  2 ~ dCg(So-i~)Oh(¢,  Sh). 
0 

The last term of the first equation in (10) is not 
present in the corresponding equation of Kato 
(1980a). This is an important difference since we thus 
obtain, for Sh = O, 

OGod(So, O)/OSo = - x 2 E 2 -  (1 - E2)x2g(O) 
- - X  2 ,  

which is in agreement with the boundary values (5). 
For so, Sh>>'r, and since X~'<< 1, we get simple 

differential equations, 

OGod/Oso = iXEGh - IXGod, 
(12) 

aGh/cgSh = ixEGod - IXGh, 

with IX = ( 1 -  E2)g2r, from which Kato proposed his 
solution for the coherent PSF: 

God = -- x E  (sol Sh ) '/2J, [2xE ( SoSh ) '/21 

X exp I-Ix(so + Sh)], (13) 

Gh = ixEJo[2xE(SoSh) '/2] exp [-Ix(so + Sh)]. 

It will be shown that these expressions, which are 
not in agreement with the exact boundary conditions, 
may nevertheless be correct in the central part of the 
Borrmann fan. 

4. Two-dimensional Laplace transformation of the 
coherent wave fields 

We may apply a two-dimensional Laplace transfor- 
mation to (11), corresponding to the coherent fields 
including the undiffracted part 8(Sh) in Go(so, Sh), to 
obtain 

[Po + ( 1 -  E2)x2~(ph)]Go(po, Ph) 

-- iXEGh (Po, Ph ) = 1 
(14) 

-- ixEGo(Po, ph)+[ph + ( 1 -  EE)xEg(po)] 

× Gh(Po, ph)=O 

where 

oo 

Go, h (Po, Ph) = ~ dso dSh exp (--phSh -- poSo) 
0 

x Go.h(so, sh) 
are the two-dimensional transforms of Go, Gh and 
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g(Po), ~,(Ph) are one-dimensional transforms. From 
(8),  

oo 

~(p) = ~ ds exp ( -ps )g ( s )  
0 

co 

= ~ ds exp ( -ps )  exp (-s/7") 
0 

= 7"/(1 + pT.). 

The solution of (11) is then, with Ix = (1 - E2)X27", 

Go(Po, Ph) = [Ph + Ix~(1 + 7"Po) ] 

x {x2E 2 +[Po + Ix/(1 + 7.Ph)] 

X[ph+ix/(1-tT.po)]} -1 (15) 

Gh(Po, Ph)= ixE{x 2E2 +[Po + IX/(1 + rph)] 

X[ph + Ix/(1 + "rpo)]}-'. 

It does not appear possible to perform the two- 
dimensional inverse transformation analytically, so 
we will introduce approximations, except in the case 
E = 0 for which an exact result is obtained. We have 

Go=[Po+X2/(ph + 1/7.)] -1 

SO 

Go ~ (~( Sh ) - -  X( So/Sh ) 1/2J1[ 2X( SoSh )1/2] 
X exp (--Sh/ 7") 

and, if E = 0, 

Gh(So, S h ) : O .  

(16) 

5. Approximations in different regions if E ~ 0 

5.1. The region So, Sh >> 7. 

In this case, it is possible to assume in (14) that 
7.Ph << 1 and 7.Po << 1 so 

Po + ix/ ( l + 7.ph) = Po + ix; 

Ph + Ix/(1 + rpo) "-'Ph + Ix, 

hence 

Go(Po, Ph) = [Po + Ix + x2E2/(Ph + Ix)]-1, 
(17) 

Gh(Po, Ph)"- iXE[X 2 E 2 + (Po + Ix)(Ph + Ix)I- t 

The inverse Laplace transformation of these 
expressions can be performed easily and leads to the 
simple expressions (13). In fact, Kato (1980a) did 
state that So >> 7" and Sh >> r are necessary conditions 
for these expressions to be valid. 

According to Polyakov et al (1991), it is possible 
to use a less restrictive approximation in (15): 

Po + Ix/(1 + 7.Ph ) " -  Po + Ix - Ix T.Ph, 

Ph + Ix/(1 + 7.Po ) = Ph + Ix -- Ix T"Po. 

The inverse transformation is then more compli- 
cated but gives, without further approximation, the 
modified expressions 

Gh =[1 _ (IX7.)2]-1 exp [ - ( IX + Ix27")(s o + Sh)] 

x iXEJo[2XE(So + IxT"Sh)I/2(S h "4- IxT"So)I/2], 
(18) 

Go = - x E [ 1  _ (IX7.)2]-1 exp [ - ( i x  + Ix27")( s o + Sh) ] 

X [ ( s  O "[- [.LT"Sh)/ ( S h + [.£7"So)] 1/2 

X Jl[ 2XE ( so + IxT"Sh ) I/2( S h -~- IX7"So)1/2], 

which can be shown to be equivalent to (13) if 
3/2 1/2 3/2 1/2 xixET"(Sh /So +So /Sh )<<1. (19) 

5.2. The region Sh << 7", So >> 7" 

For this region we can simplify (15) by using the 
approximations 

poT"+ 1 - 1 (poT"<< 1), 

phT"+l~--phT" (phT" >> 1), 
SO 

G o ( P o ,  P h )  = (Ph + tx)[x2E 2 + (Po + Ix~ rPh)(Ph + Ix )]-1 

Gh(po, Ph)= ixE[x2E 2+ (Po + Ix~ rPh)(Ph + Ix)I-1. 

We make use of the fact that 

x 2 E 2 +  Ix / ' / "  = x 2 E 2 +  (1 - E 2 ) X  2 = X 2 

and must make the approximation 

ph-F IX " Ph 

(which is valid since IX << 1/7.) then 

Go(Po, Ph) = Ph/ (X 2 + PoPh), 
(20)  

Gh(Po, Ph) = ixE/  (X 2 + PoPh). 

This is the solution of the perfect-crystal case 

Go(so, Sh ) = 8( Sh ) -- X( so/ Sh ) '/2Jl[ 2X( SoSh )1/2], 
(21) 

Gh(So, Sh)= ixEJo[2X(SoSh)U2], 

except for the presence of the factor E in the 
expression for Gh(so, Sh) (cf. Polyakov et al., 1991). 

5.3. An approximation valid for any value of  Sh and 
requiring only so >> 7. 

In this case, we do not impose a restriction on ph, 
but we can use 

p h + i x / ( l + 7 . p o ) ' p h + i x  (7.po << 1) 

so that 

Go(Po, Ph) = [Po + IX/(1 + 7.ph) + xE E2/ (po +/x)]- ' ,  

Gh(Po, Ph) = [ ixE / (ph + IX)] (22) 

X[po + IX/(1 + rph)+ x2E2/(po + IX)]-'. 
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The inverse transformation involving Po gives 

Go(So,  Ph) =exp  [--SoX2E2/ (ph + Id, )] 

X exp [ - - sdz / ( l  + Zph)], 
(22') 

Gh(So, ph) = ixE/ (ph  + tx) 

xexp [--SoX2E2/(ph +/x)] 

X exp [-SotZ/(1 + ~'Ph)]. 

The inverse transformation involving Ph leads to con- 
volution integrals 

s h 
Go(so, Sh) = K ( S h ) - X E S o  ~ d17(exp [--/Z(Sh-- 17)] 

o 

x JI{2XE[ So(Sh -- 17)]1/2} 

x [So(Sh -- 17)]-'/2) K (17), (23) 
Sh 

Gh(So, S h )= ixE  ~ d17 exp [--p.(Sh-- 17)] 
o 

X So{EXE[ so( Sh -17 ) ]1/2} K (17 ), 

where K(17) is the inverse Laplace transform of 
exp [--/ZSo/ ( l + ~'ph)], 

K (17) = 3(17) - e x p  (-17/r)(/ZSo/r17)1/2 

X J1{2[ (/z / Z)So17 ]1/2} (24) 

In fact, the present approximation breaks a symmetry 
relation resulting from the second equation of (15), 

Gh(So,  S h ) =  Gh(Sh,  So) (25)  

We propose to use (23) to calculate Gh(So, Sh) if So >> Sh 
and the result of the calculation will also be taken as 
the value of Gh at the symmetrical point obtained by 
interchanging So and Sh. 

The present approximation is in agreement with 
the rigorous formula (16) in the case E = 0. 

5.4. A validity criterion for  Kato ' s  expressions 

Let us suppose first that So > Sh > Z. The form of 
the function K(17) is thus that the effective range of 
integration in (23) is aproximately (0, r). The function 
f (Sh -- 17) in (23), for Go or Gh, can be considered to 
have the constant value f (Sh)  when 17 varies from 0 
to r if the following conditions are satisfied: 

p.r<< 1; 
(26) 

"rxE(So/Sh) 1/2<< 1. 

The result of (23) is then the product o f f ( s h )  by 
the integral of K (17). Since the upper limit of integra- 
tion can be extended to ~ ,  the value of this integral 
is simply obtained by letting Ph = 0 in the Laplace 
transform exp [-/ZSo/(1 +rph)] of K(r/). Then (23) 
is clearly reduced to the simple expressions (13) of 
Kato [since Sh > r is assumed, the function ~(Sh) in 
the result for Go can be omitted]. 

From (26), for the case So >-Sh, and from the dis- 
cussion of the preceding section, for the case so < Sh, 
we can use the criterion/~z<< 1, so can assume 

(1 - E2)z2X2 << 1 

zxE[  ( Sol Sh ) '/2 + ( Sh/ So ) I/2] << 1, 

which are most easily satisfied at the centre of the 
Borrmann fan (So "- Sh). 

6. Integrated intensities and interference effects along 
the Sh = 0 direction 

Besides the coherent waves considered in the preced- 
ing sections, there are also incoherent beams which, 
following Kato (1980a), can be separated into 'mixed 
incoherent' components, built from intensity first 
diffracted from the coherent o wave and h wave to 
the h and o incoherent beams, respectively, and 'pure 
incoherent' components built from intensity first 
diffracted directly from the incident wave to the inco- 
herent h beam. The integrated intensities considered 
in the present section are obtained by integrating the 
intensity distributions (functions of the coordinates 
So and Sh) over the exit surface of the crystal and are 
therefore the sums of coherent, mixed incoherent and 
pure incoherent terms: 

Ito°~ = IoC°d h + -o[mi "4--- -olPi 
(27) i~o,= i~oh+ i~i+ IL 

The previously existing calculations by Kato 
(1980b), A1 Haddad & Becker (1988), Guigay (1989) 
and Becker & A1 Haddad (1992) are such that 

coh i~oh od + = E 2 Q T  exp (-2p.T) 

rni i~i Io + = ( E 2 Q / E l z ) [ 1 - e x p ( - 2 l z T ) ]  
(28) 

- E 2 Q T  exp (-2/~T) 

ipi+ ipi = (1 _ EE)(Q/2tz)[1 - e x p  (-2/zT)] .  

Consequently, 

tOtl / tot ( Q / 2 1 ~ ) [ 1 - e x p ( - 2 1 x T ) ] .  
o d  - -  ~t h (29) 

Here T is the crystal thickness along the OSo direc- 
tion and Q .is the usual quantity Q = (hx2/sin 20) 
such that the kinematical value of the diffracted 
intensity is equal to QT, A being the wavelength 
of the incident radiation. /z is, as before, equal to 
(1 - E2)xEr. 

In the following we shall write the total incoherent 
intensities in the o beam and in the h beam as 

i~2o= ImP+ t~o ~, 

I~,~ = I~iq - I pi. 

If the crystal is very thick (tzT>> 1), the coherent 
intensity disappears. The total intensity (29) then 
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becomes entirely incoherent and saturates to the finite 
value Q/2/z. 

To show that (29), which actually results from an 
intuitive choice of the boundary conditions in SDT, 
is not satisfactory, we shall now use a rigorous 
approach based on a general rule known as the 
'optical theorem' in wave scattering. 

As shown in Fig. 2, an optical path of scattering 
order 2n contributing to the forward beam at a point 
M(so, Sh) such that Sh<< ~" is made of n pairs of 
scattering points close to each other (separation << ~'). 
This results in phase cancellation in each pair and 
consequently along the whole path. This explains 
physically (Guigay, 1990) that the forward-diffracted 
beam is coherent and is the same as in the case of 
a perfect crystal in the region Sh << ~', in agreement 
with (22). 

Consequently, the incident undiffracted wave 8 (Sh) 
and the forward-diffracted wave God (So, Sh) interfere 
along Sh = 0. We must take this interference into 
account when we calculate the total intensity leaving 
the crystal. We easily obtain the interference term by 
using [ cf (21 ) ] 

God(So, Sh)=--X2SoO(Sh) for X 2 S o S h  << 1 (30) 

and considering the delta function 8(Sh) as the limit 
for e ~ 0 of the rectangle function that is equal to 1/e 
for - e / 2  < Sh < e /2  and zero elsewhere. The result is 
then -X2so and is rewritten as - Q T  since So = T for 
Sh = 0 and we have to introduce the factor A/sin 20 
for calculation of the integrated intensity. The total 
diffracted intensity considered in (29) must have 
exactly the opposite value, + QT, to ensure that the 
total intensity leaving the crystal (diffracted and 
undiffracted) is exactly equal to the incident intensity. 

/ / , / / , / /  / ~ / . /  / /  / / / / '  

/ ° A  

\ 

S 0  

Fig. 2. A'zig-zag" path contributing to the forward-diffreacted wave 
(~od($o,  Sh)  with Sh<.z. The successive pairs (O O ) o f  
scattering points are such that the distance between the points 
of each pair is smaller than ~'. 

We thus get the simple relation 

itot~ i~ot QT (31) 
od " --" 

involving only the kinematical value of the integrated 
intensity, instead of (29). 

7. Direct consequences for the incoherent intensities 

7.1. The case E = 0 

In this case, for which there is no i~oh, we have 

line_l_ i~nc = QT-/coh 
o - - o d .  ( 3 2 )  

lCOh od can be calculated from (16) as the integral 

1 

icoh QT ~ d 7 e x p [ - ( T / z ) ( 1 - y ) ]  od ~- 
- 1  

(33) 
x[(1 + 7) / (1-y)]J~[xT(1-V:) ' / : ] ,  

where 7 is a dimensionless coordinate on the section 
of the Borrmann fan at the exit surface of the crystal 
and is such that 

2Sh = T(1 - Y), 

2So = T(1 + y). 

Since we suppose T >> ~- and because of the exponen- 
tial term, only a small range of 3' close to 1 is sig- 
nificant in (33). We substitute v =  1 - 3 ,  introduce 
simplifications of the integrand for v << 1 and take the 
integration range of v from 0 to oo to obtain 

co 

-odrc°h = 2QT ~ (dv/  v) exp [ - (  T/  z)v]j2[xT(2v)l/2]. 
0 

This integral can be calculated exactly in terms of 
Bessel functions of purely imaginary arguments 

icoh Q T { 1 - e x p  (-x2rT)[Io(X2~-T)+II(X2zT)]}. od 

(34) 

Then (32) can be written as 

ii,¢ j_ rin~= QT exp ( -X  2~'T)[ Io(x2zT) + II(X2zT)], o ~ J t h  

(35) 

which differs from the result of Kato (1980b) and of 
Becker & A1 Haddad (1990) in the case of E = 0, 

line +/~nc= QT[ 1 - e x p  ( -2X 2rT)]/2X 2~'T. 

In particular, for x2zT >> 1, using the asymptotic form 
of the functions Io(x) and l~(x) for large values x >> 1, 

Io(x), I i ( x ) "  exp (X)/(2"tD¢) 1/2, 

we get 

iinc + i~nc .... ( Q/2xEr (previous theory) 

( Q/x)(  T/2zn') 1/2 (present theory). 

(36) 
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We thus find that the total incoherent intensity 
increases a s  T 1/2 as a function of the crystal thickness 
instead of reaching a constant value. 

7.2. The general case, E # 0 

In this more complicated case, we shall only obtain 
the behaviour of Iinc + Iih n¢ for very thick crystals such 
that X27"T2 > 1. Generally, we have 

Iion¢ + r inc  -- Q T -  rcoh /~oh. "h -- -oa -- (37) 

We can calculate, using (21), the part ~ -¢oh OI l o d  c o r r e s -  
p o n d i n g  to the region Sh < r. We obtain an integral 
that can be calculated exactly, 

Q J d r l ( T / r l ) j 2 [ 2 x ( T n )  '/2] 
0 

= Q T { 1 - j 2 [ 2 x ( T ~ ' ) ' / 2 ] - j 2 [ 2 x ( T r ) ' / 2 ] } .  (38) 

For x 2 r T >  1, this is close to the value Q T  of the 
total diffracted intensity (31). The coherent intensity 
is thus mainly concentrated in the region Sh << r. We 
can then consider (38) as the value of the total coher- 
ent intensity in (37). We get 

l ine  + i~ne __ QT{ j2[ 2X( Tr)'/2] + j2[ 2X( rr) ' /2]} 

"" ( Q/  rrx)( T~ r),/2 (39) 

We thus obtain in the general case E # 0 for thick 
crystals a result similar to (36) in the E = 0 case. 

8. Concluding remarks 

Kato (1991) has recently presented a new discussion 
of the foundations of the statistical diffraction theory 
using wave equations that are more general than the 
Takagi-Taupin equations. The present paper is 
strictly related to the formulation of Kato (1980a, b), 
including the modifications introduced by Al Haddad 
& Becker (1988), by Becket & A1 Haddad (1989, 1990) 
and by Guigay (1989):. In this formulation the coher- 
ent waves have the simple form given in (13), which 
is expected to be a good approximation in the region 
around the middle of the Borrmann fan. The more 
general and yet simple expressions (18) have been 
obtained by Polyakov et al. (1991). 

Starting from the two-dimensional Laplace trans- 
form of the coherent waves, we have obtained more 
rigorous expressions that are not so simple but are 
valid from the middle to the edges of the Borrmann 
fan. We hope that the expansion in terms of Bessel 
functions and Laguerre polynomials given in the 
Appendix may be useful for numerical calculations. 
Indeed, it would be interesting to investigate numeri- 
cally the integrated intensities of the coherent beams 
and also their angular distribution; this problem has 
been considered recently by Bushuev (1989) in the 
case of a one-dimensional random crystal defor- 
mation. 

In the present paper the boundary conditions have 
been considered rigorously and explained physically. 
In the boundary region Sh < % the forward-diffracted 
wave is the same as for a perfect crystal, indepen- 
dently of the value of E. Consequently, the physically 
meaningful interference effect related to the optical 
theorem is of general validity. From this, we are able 
to show that the total diffracted incoherent intensity 
should increase a s  (T/q')  1/2 for large values of the 
thickness T such that x 2 r T  >> 1, instead of reaching 
a finite limit as predicted by the previous formulation 
of the dynamical statistical theory. The distribution 
of this total incoherent intensity between the Bragg 
and the forward-diffracted beams will be considered 
in forthcoming papers; for this purpose, we intend 
to use a formalism based on the Bethe-Saltpeter 
equations, as suggested by Holy & Gabrielyan (1987) 
and by Polyakov et al. (1991). 

APPENDIX 

In our calculations, we have often used the following 
inverse Laplace transforms (m is a positive integer): 

exp ( - a / p )  ~ 8( t) - ( a /  t)l/Ej,[2( at) 1/2] 

p - "  exp ( -a /p )~( t /a ) (m- l ) /EJ , , ,_ l [2(a t ) l /2  ] 

p "  e x p ( - a / p ) ~ 6 ( m ) ( t ) + . . . + [ ( - a ) m / m ! ] 6 ( t )  

+ (a/t)(m+l)/2J_m_l[2 (at)l/2]. 

These results are easily obtained from the series 
expansions of the exponential and Bessel functions. 
For t > 0 ,  the delta function 6(t)  and its derivatives 
may be omitted. 

The integral expressions (23) can be represented 
by series expansions in terms of Laguerre polynomials 
and Bessel functions: 

Go(so, Sh) = - x E  exp [l~So/(1 - tzr) - I~Sh] 

X ( S o l  S h ) 1 / 2 ( j l [  2xE ( SoSh ),/2] 

oo 

+ X [7"xEl(1--tzT")]"(solSh) "/2 

x J,,+ l[ 2XE ( SoSh ) 1/2] 

x { L,[tXSo/(1 - txr) ] 

- L . - l [ t X S o / (  1 -/xr)]}) 
(40) 

Gh( So, Sh) = ixE exp [-IXSo/ (1 - tzr) - tZSh] 

x (Jo[2XE(SoSh) 1/2] 
oo 

+ Y. [ ~ x E l ( 1 - ~ r ) ] " ( s o l s h )  "/2 
n..~ 1 

xJ.[2xE(soSh)  '/2] 

x { L,[tZSo/(1 - /x r ) ]  

- Ln_,[p.So/ ( 1 -  tzr)])). 
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These expressions, which may be useful for numerical 
calculations, are obtained by using the generating 
function of the Laguerre polynomials L, (x): 

oo 

e x p [ - x / ( 1 - t ) ] = ( 1 - t ) e x p ( - x )  ~ t"Ln(x). 
n = 0  

Indeed, in (22'), using 

Xo=p, So/(1--1,,T), ~"=~'/(1--/z~'), q=ph+l.q 

we can write 

exp [-sdz/ (1 + ~'Ph)] 

=exp [--Xo/(l +~"q)] 
o o  

=exp(--Xo)(l+T'q) ~ (-r'q)"L,(xo) 
r t = 0  

=exp(xo)  1 + 2 (-T'q)"[L,,(Xo)-L,,_~(Xo) . 

The formulae (40) are then obtained by using the 
inverse Laplace transform of q" e x p  ( - S o X 2 E 2 / q ) .  
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Abstract 

Measurements of thermal diffuse scattering from a 
single crystal of barium fluoride made on the neutron 
time-of-flight Laue single-crystal diffractometer SXD 
are presented. These measurements are shown to 
confirm present theories on the nature of the processes 
producing this scattering effect and their striking vari- 
ation with scattering geometry. 

1. Introduction 

In earlier papers (Willis, 1986; Schofield & Willis, 
1987), we have discussed the nature of thermal diffuse 
scattering (TDS) which occurs close to the Bragg 
reflections in time-of-flight neutron diffraction. Some 
of the theoretical predictions arising .from these 
studies have received experimental support from 
observations on pyrolytic graphite (Willis, Carlile, 
Ward, David & Johnson, 1986) and on single crystals 
of barium fluoride and calcium fluoride (Carlile & 
Willis, 1989). These experiments were performed on 

0108-7673/92/060826-04506.00 

the high-resolution powder diffractometer (HRPD) 
at the ISIS Pulsed Neutron Facility, using scattering 
angles around 20 = 174 °. We have now carded out 
similar experiments with the single-crystal diffrac- 
tometer (SXD) at ISIS using reduced scattering 
angles around 20 = 90 ° and 20 = 125.5 °. Some striking 
new features occur in the TDS pattern at these lower 
scattering angles. We shall give an account of these 
new observations and show that they can also be 
explained satisfactorily by theory. 

2. Time-of-flight study of TDS from barium fluoride 

The single-crystal diffractometer SXD at ISIS is a 
time-of-flight Laue instrument ideally suited to 
surveying measurements in reciprocal space. Tlae 
instrument has a short primary flight path (L~ = 8 m, 
compared with the HRPD with Lt - 100 m). In spite 
of the poorer resolution of the instrument (--5 x 10 -3 
in AQ/Q compared with 5 x 10 -4 for HRPD),  it is 
straightforward to observe the TDS features of 
interest in this work. 
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